Bourgain’s Proof of the Existence of Long Arithmetic Progressions in A+b
نویسنده
چکیده
The result says that convolutions are somewhat ‘continuous’ objects: one can find lots of translates that leave f ∗ g virtually unchanged in L; furthermore, there is a lot of structure to the set of translates. For the reader unfamiliar with Bohr sets, we give the definition and the relevant properties in the next section; the general idea to take away is that B can be considered a ‘large’ and ‘additively structured’ set.
منابع مشابه
Furstenberg’s proof of long arithmetic progressions: Introduction to Roth’s Theorem
These are the notes for the first of a pair of lectures that will outline a proof given by Hillel Furstenberg [3] for the existence of long arithmetic progressions in sets of integers with positive upper density, a result first proved by Szemerédi [8]. 1 History of long arithmetic progressions The first major result in the theory of long arithmetic progressions was due to van der Waerden in 192...
متن کاملOn rainbow 4-term arithmetic progressions
{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi'{c} and Radoiv{c}i'{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...
متن کاملArithmetic Progressions on Conics.
In this paper, we look at long arithmetic progressions on conics. By an arithmetic progression on a curve, we mean the existence of rational points on the curve whose x-coordinates are in arithmetic progression. We revisit arithmetic progressions on the unit circle, constructing 3-term progressions of points in the first quadrant containing an arbitrary rational point on the unit circle. We als...
متن کاملLarge Gaps between Consecutive Prime Numbers
Let G(X) denote the size of the largest gap between consecutive primes below X . Answering a question of Erdős, we show that G(X) > f(X) logX log logX log log log logX (log log logX) , where f(X) is a function tending to infinity with X . Our proof combines existing arguments with a random construction covering a set of primes by arithmetic progressions. As such, we rely on recent work on the e...
متن کاملSzemerédi’s Proof of Szemerédi’s Theorem
In 1975, Szemerédi famously established that any set of integers of positive upper density contained arbitrarily long arithmetic progressions. The proof was extremely intricate but elementary, with the main tools needed being the van der Waerden theorem and a lemma now known as the Szemerédi regularity lemma, together with a delicate analysis (based ultimately on double counting arguments) of l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010